

Introduction
Malware continues to increase in sophistication and routinely evades organizations’ cyber
defenses. It lurks inside networks, often for months, executing or waiting to execute
attacks that can cause significant damage. Even though the industry has developed
various technologies to bolster detection and response, the situation persists. Today the
discovery of successful attacks is still measured in months and containment in weeks,
meaning average dwell time from compromise to containment remains intolerably high.
Organizations must develop new strategies for combatting malware that evades their
defenses.

New strategies for combatting advanced malware must move beyond existing detection
approaches and focus on filling the defensive gaps that allow zero-day, polymorphic, and
evasive malware attacks to succeed regularly. These gaps occur because existing malware
analysis tools are all either too narrow in focus, too slow, too reactive, too easily defeated,
or they suffer from some combination of all these problems.

New technologies in artificial intelligence (AI) and machine learning (ML) offer the potential
for improved detection and identification, especially across large data sets such as
network traffic. However, existing statistical models focus on connecting patterns or
anomaly-based indicators of compromise (IOCs) –
not on the underlying malware. Finally, there are reverse engineering and debugging tools –
what are commonly referred to as static analysis. For advanced malware, reverse
engineering using debuggers, disassemblers, de-obfuscators, and other specialized tools is
often the best approach to truly identifying and understanding malware. However, being
both resource- and time-intensive means it is rarely used in automated detection and
response processes.

Software Supply
Chain Security and
the SOC: End-to-End
Security is Key
AS ATTACKERS EYE SOFTWARE SUPPLY CHAINS,
DEVELOPERS NEED TO COLLABORATE WITH SECURITY
OPERATIONS CENTERS (SOCS) TO HELP SPOT DEVIATIONS
FROM EXPECTED BEHAVIOR IN PRODUCTION CODE

The SolarWinds supply chain attack, which distributed malicious code in SolarWinds'
Orion software update to about 18,000 of its customers, demonstrated the need for
organizations to have capabilities for testing software not just during the development
lifecycle, but all the way through deployment and into production. "What SolarWinds
exposed was that shifting left alone is not enough to reduce the attack surface,” said
Mat Mathews, DevOps Advocate at ReversingLabs. “It brought awareness to the need for
end-to-end pipeline security."

To address the shift in threats and attacks that SolarWinds signaled, organizations need to
update their security processes by shifting development security “right” to evaluate not just
raw source code, but fully built, production-ready applications. At the same time SOC
teams need to follow the rest of the security industry: shifting “left” and working closely
with development teams to improve software security assurance, Mathews said.

For the SOC that means first understanding the baseline for normal code, file, and network
behavior, monitoring for deviations from that behavior in the running code, and reporting
that back to the development teams.

Why switch things up now? First, it is important to understand the history of supply chain
attacks and why they are gaining prominence.

The Growing Software Supply Chain Threat
Attacks targeting the software supply chain and enterprise CI/CD pipelines have increased
significantly since SolarWinds. There have been more attacks on the software supply chain
since 2018 than in the previous 40 years combined, according to a ReversingLabs
historical analysis of incidents.

Some of the attacks—such as one on software publisher Codecov and another on
AsusTek—were similar to the SolarWinds breach in that they targeted the victim's
development environment. Many others involved attempts to indirectly poison internal build
environments via malicious packages published to widely used public code repositories
such as npm and PyPI. In those attacks, threat actors use tactics such as typosquatting
(registering common misspellings of a target organization's domain) and dependency
confusion to trick developers and automated pipeline tools into downloading and using the
malicious packages in their software.

01

Mat Mathews
DevOps Advocate, ReversingLabs

What SolarWinds exposed was that shifting left alone
is not enough to reduce the attack surface. It brought
awareness to the need for end-to-end pipeline security.

https://www.csoonline.com/article/3601508/solarwinds-supply-chain-attack-explained-why-organizations-were-not-prepared.html
https://www.reversinglabs.com/hubfs/Documents/2022-RL-Flying-Blind-Software-Firms-Struggle-To-Detect-Supply-Chain-Hacks.pdf
https://blog.reversinglabs.com/blog/a-partial-history-of-software-supply-chain-attacks
https://blog.reversinglabs.com/blog/a-partial-history-of-software-supply-chain-attacks
https://about.codecov.io/security-update/
https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/
https://www.darkreading.com/dr-tech/new-application-security-toolkit-uncovers-dependency-confusion-attacks
https://www.darkreading.com/dr-tech/new-application-security-toolkit-uncovers-dependency-confusion-attacks

For example, in April 2022 researchers from ReversingLabs discovered more than
two-dozen malicious packages impersonating, or typo-squatting, widely used JavaScript
modules published on npm package manager. The packages contained obfuscated jQuery
scripts for stealing form data from individuals who used applications where the packages
had been deployed. Some of those poisoned packages were downloaded thousands of
times and installed in mobile, desktop and web applications.

In a separate February 2021 incident, independent security researcher Alex Birsan
breached the internal systems of 35 major companies by taking advantage of the fact that
developers at those organizations used both internally developed packages and
open-source packages for building software. Birsan demonstrated how an attacker could
easily compromise the build environments at those companies by planting malicious code
in a public repository and giving it the same name as an internally hosted, privately
developed package at the target organization. Among the firms breached in Birsan's
seminal dependency confusion attack were Microsoft, Apple, Uber, and Netflix.

THE DEMOCRATIZATION OF SUPPLY CHAIN AT TACKS
Today it no longer takes nation-state smarts or resources to pull off a supply chain attack
like SolarWinds, says Tomislav Peričin, Co-founder and Chief Software Architect at
ReversingLabs. "You don’t need to have a large budget or nation-state resources to make
an impact. Anybody can sneak a software package in and target not just the developer but
also the user. It is an escalation in supply chain attacks."

The bad guys have taken notice. An analysis of data in the National Vulnerability Database
(NVD), conducted by ReversingLabs, revealed that attacks on public code repositories
such as PyPI and npm increased 289% since 2018. The common goal in many of these
attacks is to distribute information-stealing malware, cryptominers and malicious
backdoors to downstream customers. The threat posed by these attacks is even more
significant when you consider the growing dependence on open-source code in enterprise
software development.

Tomislav Peričin
Co-founder and Chief Software Architect, Reversing Labs

You don’t need to have a large budget or nation-state
resource to make an impact. Anybody can sneak a
software package in and target not just the developer but
also the user. It is an escalation in supply chain attacks.

02

https://www.darkreading.com/dr-tech/new-application-security-toolkit-uncovers-dependency-confusion-attacks
https://www.darkreading.com/dr-tech/new-application-security-toolkit-uncovers-dependency-confusion-attacks
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://develop.secure.software/nvd-analysis-2022-why-you-need-to-modernize-your-software-security-approach

According to research from the Linux Foundation, 70-90% of modern applications include
code from open-source projects. Free and open-source software has become a vital
component of software codebases across nearly all industries and across both the public
and private sector.

MANY AVENUES FOR AT TACKS
Vulnerable and poisoned open-source components and direct attacks on development
environments are part of a broader set of software supply chain security concerns. As the
National Counterintelligence and Security Center (NCSC) of the U.S. Director of National
Intelligence (DNI) notes, software supply chain attacks take multiple forms. They can
involve anything from simple detection tactics like typo-squatting and spoofing of
legitimate products to surreptitiously accessing and modifying an organization's source
code using sophisticated means.

"Adversaries may seek to exploit tools, dependencies, shared libraries, and third-party code
in addition to compromising the personnel and infrastructure of developers and
distributors," the NCSC notes. Attacks can target software products at any stage of the
software development lifecycle and be used to maintain persistence in a target
environment in order to conduct surveillance or enable sabotage.

DevOps teams are aware of the risks but are inadequately prepared to address them. In a
2022 ReversingLabs survey of more than 300 technology professionals at software
development companies, 98% of respondents said the use of third-party software and
open-source code had heightened security risks in their organizations.

In that survey, threats hidden in open-source repositories ranked as second most critical,
just behind vulnerabilities in application software and operating systems. Eighty-seven
percent said software tampering could result in a security compromise in their
organization. Despite that, just 37% said their organizations had the ability to detect such
tampering across the software supply chain. "The software supply chain is where attacks
are going to happen in the future, but many organizations don’t have a strong sense of the
types of code within their organization and where that (code) is inherited from," says
Gregory Crabb, Founder, 10-8 Cyber and former CISO of the United States Postal Service.

Gregory Crabb
Founder, 10-8 Cyber

The software supply chain is where attacks are going to
happen in the future, but many organizations don’t have
a strong sense of the types of code within their
organization and where that is inherited from.

03

https://www.linuxfoundation.org/blog/blog/a-summary-of-census-ii-open-source-software-application-libraries-the-world-depends-on
https://www.dni.gov/files/NCSC/documents/supplychain/Software_Supply_Chain_Attacks.pdf
https://blog.reversinglabs.com/blog/survey-finds-software-supply-chain-security-top-of-mind-for-dev-teams

04

A Need for Visibility
The primary focus of a shift-left approach has been to build capabilities for detecting and
mitigating errors and vulnerabilities in code as it is developed and readied for release. It
emphasizes the use of technologies like Static Application Security Testing (SAST) and
Dynamic Application Security Testing (DAST) to verify the security of code as it is
developed.

Such approaches are becoming common. In a May 2022 Gitlab survey of over 5,000
software professionals, 53% of respondents said they run SAST scans to identify and
address potential issues in static code that could result in a security vulnerability. Fifty-five
percent said they run DAST scans against operational code to check for potential security
flaws related to run-time issues such as authentication, user interfaces, and sessions. And
56% said they perform dependency scans to check for known vulnerabilities in the
open-source components they use.

Shift-left testing is widely perceived as giving DevOps teams a way to maintain the
cadence of application delivery that modern businesses require while reducing the costs
associated with detecting and remediating security issues in code. More than half of the
respondents in the GitLab survey said they shifted left to enable better application security.

Unfortunately, traditional application security testing and source code analysis capabilities
don’t provide deep enough visibility to detect tampering and behavioral changes of finished
binaries, Peričin says. While static analysis and vulnerability scanning tools work at the
source code level, they can’t detect changes or anomalies in an application’s behavior
when the program is running.

Concerns over software supply chain attacks have also heightened enterprise interest in
software composition analysis (SCA) practices. SCA platforms help organizations generate
a software bill of materials (SBOM) that identifies all of the open-source components that
might have been used to build a particular application and their dependencies with other
components. An SBOM can help your organization identify the provenance of open-source
components, license status, usage restrictions, whether they have been deprecated or
contain vulnerabilities, and even if they have been tampered with.

In the U.S. government sector, SBOMs are already a requirement for vendors selling
software to federal agencies, thanks to a May, 2021 Cybersecurity Executive Order issued
by the Biden administration. The order requires software publishers to ensure that
comprehensive machine-readable SBOMs are available for all products and classes of
software that they plan to sell to the federal government.

 The executive order (EO) directed the National Institute of Standards and Technology
(NIST) to develop guidance for implementing these requirements. In July 2021, the US
Department of Commerce, working with the National Telecommunications and Information
Administration (NTIA), published a set of minimum elements (PDF document)—as required
under the Biden EO—that organizations must include in an SBOM. A September, 2022
memorandum (PDF document) from the White House Office of Management and Budget
set out specific deadlines for federal agencies to ensure that all software sourced from
external software makers and sources have SBOMs that comply with NIST's guidance.

https://about.gitlab.com/press/releases/2022-08-23-gitlab-sixth-annual-devsecops-survey.html
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf

Unfortunately, while these measures enhance software security, they’re not sufficient in
themselves to prevent all supply chain attacks. Notably, tools like SAST and DAST can’t
detect the kind of tampering that occurred in the attack on the SolarWinds Orion code.
Traditional application security testing and source code analysis can’t detect software
tampering in compiled code, nor can it detect compromises of development pipelines that
inject malicious components into production code. One consequence of this lack of
visibility: Four in 10 software packages currently in production have at least some
tampering within them, according to a ReversingLabs survey on risk tampering.

For example, development ecosystems have become heavily dependent on open-source
and third-party components, which means that organizations must consider
vulnerabilities not just in their proprietary code but in open-source components and
third-party code from business partners and outsourced vendors. Increasingly, software
security requires the ability to monitor for risks in proprietary code as well as open-source
and third-party libraries, packages, and components—both within the enterprise and
across cloud, container, and infrastructure-as-code environments.

Similarly, while SBOMs can play a big role in bolstering application security, much
depends on how they are constructed and used, security experts say. As ReversingLabs
has observed, the process for enabling SBOMs in many organizations continues to be
manual and is primarily designed for internal development teams, not for external
customers and auditors.

IT ’S NOT (JUST) ABOUT VULNERABILIT Y SCANNING
Security experts agree that shift-left approaches enable better software security, but
software supply chain protection isn't just about detecting vulnerabilities during
development. "Software supply chain security is about understanding the entire threat
landscape, who is actually wanting to implant malicious code within your software and
how and what they could get out of it," Peričin said.

Tomislav Peričin
Co-founder and Chief Software Architect, Reversing Labs

Software supply chain security is about understanding
the entire threat landscape, who is actually wanting to
implant malicious code within your software and how
and what they could get out of it.

05

https://www.reversinglabs.com/newsroom/press-releases/survey-software-supply-chain-risk-software-tampering
https://www.reversinglabs.com/sboms-securing-software-supply-chains
https://www.reversinglabs.com/sboms-securing-software-supply-chains

06

To be useful, the information in an SBOM also must be connected with actionable
information, and all applications and systems in an environment should be able to query it.
Otherwise, an SBOM is nothing more than a list of components. "It doesn’t tell you if any of
that is fake," Peričin says.

Multiple standards are available for communicating SBOM information—such as
components, copyrights, and licenses—across organizations. The most used among
these are SPDX, SWID and CycloneDX.

SPDX, or Software Package Data Exchange, is a Microsoft-developed SBOM generator
that the software vendor released to the open-source community in July 2022. The Linux
Foundation currently hosts the project. SWID, for Software Identification (SWID) Tagging,
is an SBOM format developed by the International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC). SWID tags identify the
components in a software product, the provenance of those components, the product
version, and several other characteristics. CycloneDX is an open-source component
analysis platform maintained by the CycloneDX Core Working Group. Like the other SBOM
formats, CycloneDX gives organizations a standard way to inventory software
components and the dependencies between them.

While most organizations are aware of the value that SBOMs can deliver, most haven’t
adopted them, the ReversingLabs survey concluded. Just 27% of respondents said their
organizations generate and review SBOMs prior to releasing software. Those DevOps
teams that use SBOMs focus on reviewing open-source components and internal
components and focus to a lesser extent on reviewing software components from
contractors, business partners and other third-parties. More than half (54%) of
respondents said their companies knowingly release software with potential security
vulnerabilities in them.

TOO MUCH TRUST
The NCSC identified another problem (PDF): the software integrity protocols that shift-left
tools use to verify the trustworthiness of code can themselves be exploited.
Cryptographically signed code, for instance, is used as an indication that code has been
approved by its developer and has not been subsequently modified. Similarly, developers
and users often rely on hashing algorithms to verify software integrity. The problem is that
both measures can be circumvented.

Threat actors can steal the cryptographic keys used for code signing or compromise the
development process before the software is signed or hashed, the NCSC notes. One
example is a 2019 attack where ShadowHacker, a sophisticated advanced persistent threat
actor, modified a version of an automatic software updater belonging to computer maker
ASUSTek, signed the tool with a legitimate ASUS digital signature and shipped it to
thousands of customers.

https://develop.secure.software/the-sbom-is-evolving-4-key-trends-boost-software-supply-chain-security
https://spdx.dev/about/
https://devblogs.microsoft.com/engineering-at-microsoft/microsoft-open-sources-software-bill-of-materials-sbom-generation-tool/
https://csrc.nist.gov/projects/software-identification-swid/guidelines#:~:text=The%20SWID%20Tag%20format%2C%20defined,IEC%2019770%2D2%3A2015.
https://cyclonedx.org/#:~:text=OWASP%20CycloneDX%20is%20a%20lightweight,origins%20in%20the%20OWASP%20community.
https://cyclonedx.org/#:~:text=OWASP%20CycloneDX%20is%20a%20lightweight,origins%20in%20the%20OWASP%20community.
https://www.dni.gov/files/NCSC/documents/supplychain/Software_Supply_Chain_Attacks.pdf
https://spectrum.ieee.org/operation-shadowhammer-exploited-weaknesses-in-the-software-pipeline

07

National Counterintelligence
and Security Center

In some instances, attackers have inserted malware
before the software code has been compiled and
signed, embedding it behind standard security
signatures. In other instances, attackers have injected
malicious code through genuine updates and patches
for software releases and upgrades.

A Better Approach: Software Security Assurance
Rather than relying solely on development groups to secure organizations from supply
chain threats, developers and security operations centers (SOC) need to collaborate on
software security assurance.

“While developers are responsible for ensuring clean code, it takes a cross-functional team
with a specific focus on security to reduce the attack surface against supply chain
attacks,” Mathews says.

Mat Mathews
DevOps Advocate, ReversingLabs

While developers are responsible for ensuring clean
code, it takes a cross-functional team with a specific
focus on security to reduce the attack surface against
supply chain attacks.

Furthermore, SOC analysts need visibility into how code behaves across the environment,
including container-based software and the processes running in them. And they must
have capabilities for baselining normal code, file, and network behavior so they can monitor
for and detect deviations from that baseline. Those deviations might include malicious
behaviors such as the use of evasion techniques, packers, and javascript obfuscators. "You
have to understand how compiled software versions are supposed to behave normally to
be able to detect anomalies," Peričin says. "Knowing after the fact is not good enough
because the damage has already been done."

Third-party and open-source packages present a major risk to software security. To
mitigate exposure, SOCs need to scan packages in code repositories and spot packers,
obfuscated code and other markers of potential tampering and malicious activity in any
packages the development team plans to use. In this way, the SOC will have greater
visibility over all third-party and open-source components in the environment and ensure
that they have been properly configured and are vulnerability-free.

A modern software security assurance strategy should bring the SOC into the loop of
continuous integration/continuous deployment (CI/CD) software development and release
cycles.

As developers release new versions and leverage continuous integration systems, the SOC
team should be involved in the process. They should have a comprehensive report on the
components and whether each is properly configured, analyze every build artifact for
behavioral differences between compiled software versions, and alert the development
and app sec teams of malicious, anomalous, or potentially suspicious behavior. "Not only
do you need the controls of shifting left, but you also need to be able to validate the
performance of the controls and the integrity of the process," Crabb from 10-8 Cyber says.

Tomislav Peričin
Co-founder and Chief Software Architect, Reversing Labs

You have to understand how compiled software versions
are supposed to behave normally to be able to detect
anomalies. Knowing after the fact is not good enough
because the damage has already been done.

08

09

Gregory Crabb
Founder, 10-8 Cyber

Not only do you need the controls of shifting left, but
you also need to be able to validate the performance of
the controls and the integrity of the process.

MANDATED REQUIREMENTS
Many of these practices are now becoming official US Government policies—including new
guidance that federal agencies can implement to address growing concerns over supply
chain security.

For example, the National Institute for Standards and Technology's (NIST) Version 1.1 of
SP 800-218, the Secure Software Development Framework (SSDF), and the recently
updated SP 800-161r1 publication on Cybersecurity Supply Chain Risk Management call
for "rigorous and predictable mechanisms" for ensuring software security, such as SBOMs,
binary software composition analysis, and source composition analysis, and checking for
backdoors and malicious code in open-source components.

And the requirements stemming from the Biden administration’s 2021 executive order call
on federal agencies to integrate cybersecurity supply chain risk management with broader
enterprise risk management activities. "It encourages organizations to consider the
vulnerabilities not only of a finished product they are considering using, but also of its
components—which may have been developed elsewhere—and the journey those
components took to reach their destination," NIST noted in announcing the new publication
in May.

In September 2022 the Office of the Director National Intelligence, along with CISA and
NSA ODNI, released the first in a three-part series on recommended practices for software
developers, publishers and agencies acquiring software from these entities. The guidelines
were developed by Enduring Security Framework (ESF) and offer recommendations for all
stakeholders in the software supply chain on how to meet requirements spelled out in the
May 2021 Biden Executive Order.

Best Practices for Addressing Supply Chain Risks
Publications such as those from NIST provide a detailed roadmap for implementing
controls in the software lifecycle that address supply chain threats. Recommended
measures range from defining security requirements for secure software development, to
implementing roles and responsibilities for the mission, to which toolchains to use and how
to design secure software.

https://blog.reversinglabs.com/blog/the-supply-chain-security-guide-roadmap-for-a-post-solarwinds-world
https://blog.reversinglabs.com/blog/the-supply-chain-security-guide-roadmap-for-a-post-solarwinds-world
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1.pdf
https://www.nist.gov/news-events/news/2022/05/nist-updates-cybersecurity-guidance-supply-chain-risk-management

10

Here are several other best practices that every organization should consider to address
software supply chain risks.

SHIFT SECURIT Y TESTING RIGHT
A shift-left strategy that’s primarily focused on testing software during the development
process is no longer enough. To protect against supply chain threats, organizations need to
also implement processes for testing right of the development process all the way through
to production.

The SOC should assume responsibility for testing production-ready applications for
security vulnerabilities and software tampering prior to release. Its goal should be to detect
and remediate run-time vulnerabilities that might have been missed during the
development phase or introduced via tampering into code after development.

It's time to start thinking of SOCs as release managers for software, Crabb says.

“My recommendation to security teams is to maximize coverage in a way that’s least
intrusive to development,” Tomislav says. If you don’t have security in place, introducing a
final build verification is a good first step toward maximizing coverage. If you already have
security in place, consider the following steps.

MAKE YOUR SOC AN INTEGRAL PART OF THE SOFT WARE RELEASE AND SOFT WARE
INTEGRIT Y PROCESS
Whenever and at whatever level the development team releases code into the environment,
the SOC needs to be examining it for anomalies in code and/or behavior, says Mathews.
"This requires comparing the latest iteration of the software with all known previous
versions for any difference in behavior."

ENSURE THAT THE SOC CAN EVALUATE CODE IN A MANNER THAT’S CONSISTENT
WITH THEIR TRADITIONAL MECHANISMS FOR COMMUNICATING THREATS AND RISKS
TO THE ORGANIZATION
To be responsive to supply chain threats, SOC teams need to deploy code and package
analysis technology that helps them identify security issues, and that does so in the the
language they are familiar with and use when detecting and responding to broader threats
in the environment, Mathews says.

The SOC needs to track code from the moment it is introduced into the organization to the
first point of deployment and into production. "SOC teams need to be able to evaluate code
in a manner that is consistent with their traditional mechanisms for communicating threats
and risks to the organization," Crabb says. "That means they need to do real-time package
analysis on anything that is being put into production.”

USE A PL ATFORM THAT WILL PLUG INTO THE DEVELOPMENT SIDE WHILE ALSO
PROVIDING VISIBILIT Y FOR THE SOC
The goal here should be to continue to give developers tools for analyzing code as it is
written and compiled across containers and CI/CD environments. SOC teams need
visibility into changes happening on the software side so they can detect malicious and
accidental changes to application code and behavior. They need to do this across the
entire CI/CD pipeline, from the development and build phases to testing and merge,
Mathews says.

Shift Right and Collaborate
The fast-evolving nature of supply chain attacks has exposed the limitations of shift-left
software security assurance approaches that focus on vulnerability scanning and
remediation during the software development and release process. To address the latest
supply chain threats, organizations should shift security right and begin testing fully built,
production-ready applications.

Developers and the SOC must work together on software security assurance. While
DevOps teams focus on secure coding practices, the SOC needs to test applications after
they have been developed to ensure that the code behaves as intended, and in a secure
manner.

Contact ReversingLabs to
learn more about malware

analysis solutions

REQUEST A DEMO

ReversingLabs supports many languages and repository

packages to deliver software supply chain protection for

CI/CD workflows, containers and release packages.

Why Malware Detection Isn’t Enough Protection

Against Software Supply Chain Attacks

Download Solution Brief

A look back at 2021: The year supply chain

threats went mainstream

Read Blog

What You Need to Know: NIST's Secure

Software Development Framework

Watch Video

Free SBOM: Jumpstart Your

Supply Chain Security Journey

Learn More

Copyright 2022 ReversingLabs. All rights reserved. ReversingLabs is the registered trademark of ReversingLabs US Inc.
All other product and company names mentioned are trademarks or registered trademarks of their respective owners.

Worldwide Sale:
+1.617.250.7518

sales@reversinglabs.com

Additional Resources:

https://www.reversinglabs.com/resources/why-malware-detection-isnt-enough-protection-against-software-supply-chain-attacks
https://www.reversinglabs.com/resources/what-you-need-to-know-nists-secure-software-development-framework
https://blog.reversinglabs.com/blog/a-look-back-at-2021-the-year-supply-chain-threats-went-mainstream
https://register.reversinglabs.com/demo
https://www.reversinglabs.com/solutions/software-bill-of-materials-sbom

