

The State of
Software Supply
Chain Security
ATTACKS ON SOFTWARE SUPPLY CHAINS SOARED IN 2022.
HERE ARE THE MAJOR TRENDS — AND WHAT LIES AHEAD IN 2023.

R E P O R T

Contents
Executive Summary 02

What counts as a supply chain attack? 03

A recent history of software supply chain attacks 03

New policy mandates: Uncle Sam wants YOU! (to secure your code) 04

Supply Chain Security in 2022: Threats Multiply 04

 Supply chain attacks surged 04

 Sidebar: The enduring security framework 05

 Malicious npm packages jumped by more than 40% 05

 Malicious PyPi packages: a quieter year but still way up from 2020 06

 Sidebar: Five recommendations for securing executable code 06

 Malicious npm packages were the biggest slice of the pie 06

 Typosquatting attacks proliferated 08

 Leaked secrets plagued security teams 08

 Sidebar: Supply chain red flag: obfuscated code 08

 Vulnerable dependencies opened doors to attacks 10

 Sidebar: A year of spilled secrets 11

 Protestware supply chain attacks emerged as a new threat 12

Fears of supply chain attacks are growing 13

What’s next? Looking ahead to 2023 13

 Supply chain attacks will accelerate — and diversify 13

 Platform owners will boost their defenses 14

 Supply chain security automation will take hold 15

 Federal guidance will start to bite 15

 More organizations will create open source program offices 15

Guidance: Four steps to address supply chain security 16

 Broaden your focus to include supply chain risks 16

 Shift left together: foster dev and SOC coordination 17

 Home in on open source risks 18

 Invest in proactive threat hunting 18

Conclusion 19

To detect software supply chain tampering, look beyond the code 19

Executive Summary
Almost two years after word of the SolarWinds hack first spread, software supply chain
attacks show no sign of abating.

In the commercial sector, attacks that leverage malicious, open source modules continue
to multiply. Enterprises saw an exponential increase in supply chain attacks since 2020,
and a slower, but still steady rise in 2022. The popular open source repository npm, for
example, saw close to 7,000 malicious package uploads from January to October of 2022
— a nearly 100 times increase over the 75 malicious packages discovered in 2020 and 40%
increase over the malicious packages discovered in 2021.

The Python Package Index (PyPi) was also flooded with tainted open source modules
designed to mine cryptocurrency and plant malware, among other things. These attacks
were consistent with what researchers observed in 2021, when attackers commonly used
techniques such as dependency confusion and typosquatting. As in previous years,
high-profile organizations including Samsung and Toyota found themselves embarrassed
by secrets exposed through open source repositories that were maintained internally or by
third-party contractors.

The attacks have increased the focus on software supply chain security. Following the
issuance of the Biden Administration’s May 2021 Executive Order on Improving the
Nation’s Cybersecurity (EO 14028), the past year saw new federal guidance for tightening
supply chain security. That included a practice guide for software suppliers to the federal
government issued by the Enduring Security Framework (ESF) Software Supply Chain
Working Panel. Also issued: a September, 2022 memorandum from the Office of
Management and Budget (M-22-18) that requires software firms to attest to the security of
software and services they license to Executive Branch agencies. (See “New policy
mandates: Uncle Sam wants YOU! (to secure your code)” below).

In the coming year, software publishers with federal contracts will need to clear higher bars
for software security to meet the new guidelines, including having to attest to the security
of their code and — in some cases — produce SBOMs that provide a roadmap for tracking
down supply chain threats. Given that the threat of supply chain attacks goes beyond
publishers that sell to the federal government, all organizations that develop software will
need to take similar steps to keep ahead of these threats.

They will need new tools and approaches to do that, and this report offers
recommendations to prevent supply chain compromises. These include increased scrutiny
of open source risks and better coordination between development teams and security
operations centers (SOCs) to bridge the gaps in both the monitoring and detection of
supply chain threats and attacks.

02

https://blog.gitguardian.com/samsung-and-nvidia-are-the-latest-companies-to-involuntarily-go-open-source-potentially-leaking-company-secrets/
https://securityboulevard.com/2022/10/secrets-in-code-combined-with-code-leaks-exposed-data-for-300000-toyota-customers/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://media.defense.gov/2022/Sep/01/2003068942/-1/-1/0/ESF_SECURING_THE_SOFTWARE_SUPPLY_CHAIN_DEVELOPERS.PDF
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf

A recent history of software supply chain attacks
Software supply chain compromises date back more than four decades, when
a covert CIA operation allegedly fed compromised industrial control system
(ICS) software to a Soviet gas pipeline operator, resulting in a massive
explosion. But for most of the modern Internet era, attacks transmitted by
way of tampered software were the exception, rather than the rule.

Much of the recent history of cyber threats, attacks and compromises centers
on the exploitation of software vulnerabilities, such as the notorious “Eternal
Blue” exploit of the MS17-010 vulnerability in Microsoft’s Server Message
Block that powered the explosive WannaCry and NotPetya malware infections.
Or it hinges on the placement of designed-malicious wares — like ransomware
— on high-value endpoints and networks, often as a result of successful
phishing and social engineering attacks on privileged users.

But that history of exploits and malicious attachments is ceding ground as
malicious actors adapt their methods and strategies to find new avenues into
sensitive private- and public-sector environments. According to the
ReversingLabs report, A Partial History of Software Supply Chain Attacks,
attacks on software development organizations and software supply chains
are increasing at a dramatic rate. In fact, of the 42, half occurred in 2021 and
2022.

The logic behind the increase in these attacks is easy to understand: open
source software libraries and components form the foundation of, by some
estimates, 75% of applications. With an increasing reliance on open source
packages, the attacks on open source repositories have become a matter of
“fishing where the fish are,” while also sidestepping many of the security and
detection tools that have been deployed to protect more traditional targets.

Instances of software supply chain attacks are increasing. Half of the 42 supply
chain attacks ReversingLabs has documented occurred in 2021 and 2022. To view
the full history, read the article, A Partial History of Software Supply Chain attacks

03

What counts as a
supply chain attack?
A software supply chain attack is
an attempt to exploit a weakness at
a given stage in the software
supply chain — the sequence of
steps leading to the creation of a
piece of software (a.k.a “software
artifact”). Supply chain attacks try
to access and manipulate source
code, build processes, or update
mechanisms of legitimate
applications as a means to an end:
planting malware; stealing data;
sowing disruption; and so on. Note
that software supply chain attacks
aren’t the same as attacks on
software. For example: attempts to
exploit software vulnerabilities for
malicious purposes (privilege
escalation, installing malware, etc.)
are not software supply chain
attacks because they target the
finished software artifact, not the
supply chain.

https://slsa.dev/spec/v0.1/terminology
https://slsa.dev/spec/v0.1/terminology
https://www.wired.com/2004/03/soviets-burned-by-cia-hackers/
https://www.wired.com/2004/03/soviets-burned-by-cia-hackers/
https://blog.reversinglabs.com/blog/a-partial-history-of-software-supply-chain-attacks
https://learn.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://www.mandiant.com/resources/blog/smb-exploited-wannacry-use-of-eternalblue
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://blog.reversinglabs.com/blog/a-partial-history-of-software-supply-chain-attacks
https://develop.secure.software/nvd-analysis-2022-why-you-need-to-modernize-your-software-security-approach
https://develop.secure.software/nvd-analysis-2022-why-you-need-to-modernize-your-software-security-approach

Uncle Sam wants YOU!
(to secure your code)

Trends associated with digital transformation are also increasing
organizations' exposure to software supply chain risk. Organizations in both
the public and private sectors have embraced hardware, software and
services characterized by always-on Internet connections, remote,
cloud-based management and extensive software supply chains that consist
of both open source and third-party code.

EXECUTIVE ORDER 14028

Headlines point to the security cost of such changes. Here are just a few:

• Russian state-sponsored actors used compromised remote management
software to push out wiper malware embedded in software updates to
satellite modems used by the Ukrainian military.

• Hackers planted information-stealing malware in rogue Javascript npm
packages that mimicked common open source packages used by developers
for Microsoft’s Azure cloud platform.

• A major car manufacturer exposed information on hundreds of thousands of
customers by exposing a private key for accessing a customer database in a
public source code repository.

These attacks feed on practices and behaviors that are ubiquitous. Among
them: a heavy reliance on centralized, cloud-based infrastructure; fast-moving
DevOps practices that have greatly increased the cadence of software
releases, in part through heavy use of third-party commercial off-the-shelf and
open source modules to speed development; and an increased reliance on
centralized auto-update mechanisms to facilitate the rapid release cycles of
modern, cloud-based applications and services.

Supply Chain Security in 2022: Threats Multiply
Attacks on open source repositories have skyrocketed in the past decade,
outpacing vulnerabilities found in those repositories. Between 2018 and 2021,
for example, attacks on npm and PyPI increased by 271% and 414%,
respectively. That trend continued in 2022.

The sheer scale of supply chain attacks threatens to overwhelming platform
providers. For example, malicious actors leveraged automatic submission
features in npm to submit more than 900 malicious npm packages through a
single submitter account in August, 2022. And researchers discovered similar
attacks involving dozens or scores of malicious packages on other platforms,
including PyPi.

As threats multiplied in 2022, here are the key trends ReversingLabs
researchers observed over the last 12 months:

SUPPLY CHAIN AT TACKS SURGED
The distributed and ubiquitous nature of software development, and the
absence of a governing body responsible for monitoring the security and
integrity of development organizations, made compiling a comprehensive
report on software supply chain threats and attacks virtually impossible.

For software firms that do
business with the U.S.
Government, new guidelines raise
the bar for software and supply
chain security. Here are some
recent developments that firms
should pay attention to in 2023.

The Biden Administration’s
Executive Order (EO) for Improving
the Nation’s Cybersecurity,
released in May of 2021, laid out
new guidelines for securing
software used by federal agencies.
Among other things, it set new
guidelines for software supply
chain security, and empowered the
Office of Management and Budget
(OMB) to require agencies to
comply with those guidelines.

MEMORANDUM M-22-18
Following a directive in the
Executive Order, the Office of
Management and Budget released a
memo in September directing
federal agencies to comply with
NIST guidance on software supply
chain security, including
compliance with NIST Special
Publication 800-218 and
subsequent NIST guidance on
software supply chain security. The
memo sets a timeline for federal
agencies to communicate new
software security requirements to
their vendors, and for software
publishers that sell to federal
agencies to attest to the security of
their wares. It also opened the door
to federal agencies requiring the
creation of SBOMs that they can
use to identify, track and monitor
individual components within larger
applications and services.

https://www.technologyreview.com/2022/05/10/1051973/russia-hack-viasat-satellite-ukraine-invasion/
https://www.zdnet.com/article/malicious-npm-packages-target-azure-developers-to-steal-personal-data/#ftag=RSSbaffb68
https://www.zdnet.com/article/malicious-npm-packages-target-azure-developers-to-steal-personal-data/#ftag=RSSbaffb68
https://www.reuters.com/technology/toyota-says-information-about-296000-users-its-t-connect-service-leaked-2022-10-07/
https://www.reuters.com/technology/toyota-says-information-about-296000-users-its-t-connect-service-leaked-2022-10-07/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/wp-content/uploads/2022/09/M-22-18.pdf
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://www.nist.gov/system/files/documents/2022/02/04/software-supply-chain-security-guidance-under-EO-14028-section-4e.pdf
https://blog.reversinglabs.com/blog/new-malicious-packages-in-pypi-repo
https://blog.reversinglabs.com/blog/new-malicious-packages-in-pypi-repo

05

The Enduring Security
Framework
Also in 2022, the NSA, CISA and
ODNI released The Enduring
Security Framework (ESF), a new
set of practice guidelines that is a
roadmap for software vendors that
do business with the federal
government on how to implement a
secure software development
framework (SSDF) as envisioned
by the EO.

The ESF practice guidelines call on
federal agencies and their
software suppliers to develop
proficiency in areas like binary
scanning and software
composition analysis (SCA), which
can detect unknown files and open
source components, and their
associated security weaknesses.

The Framework also includes
practice guidelines devoted to
developing secure code such as:

• Focusing on critical code, such as
that requiring elevated privileges,
accessing sensitive resources or
using or implementing
cryptographic functions

• Removing “ease of development”
features like temporary back doors
that find their way into production
code

• Addressing risks posed by
malicious insiders, rogue
developers and compromised
development systems

• Mapping newly created code back
to clearly identified features, and
implementing authentication for
code check-ins to guard against
compromised development
systems

MALICIOUS NPM PACK AGES JUMPED BY MORE T HAN 4 0%
Malicious package submissions to both the npm and PyPi repositories
increased substantially in the last two years, according to ReversingLabs
research data. From January to October, 2022, 6,977 malicious packages
were uploaded to npm and 1,493 to PyPi (The data researchers used is based
on the timestamp for package creation on both npm and PyPi).

2020

2000

0

4000

6000

8000

2020.5 2021.52021 2022
Year

P
ac

ka
ge

 c
ou

nt

NPM (created on)

PyPl (created on)

However, there are some objective measures researchers can use as a rough
assessment of the state of software supply chain security and the prevalence
of malicious activity targeting development organizations.

One is the prevalence of malicious packages posted to prominent open
source repositories such as npm, PyPi, and RubyGems. A ReversingLabs
analysis of supply chain attacks like IconBurst and Material Tailwind shows
that malicious actors are leveraging trust in open source software to plant
malicious code within organizations. So malicious packages on platforms
such as npm, while only a small part of the overall supply chain threat
landscape, are telling — a possible “canary in the coal mine” indicating that
more sophisticated, harder-to-detect attacks may be out there.

Figure 1. Malicious package uploads to the npm code repository showed a 41% increase in 2022
over 2021, when researchers detected 4,940 packages. And the 2022 numbers represent more
than a 9,000% increase over 2020, when researchers detected just 75 malicious npm packages.

Source: ReversingLabs

THE ODDS OF COMING ACROSS A MALICIOUS PACKAGE ON POPULAR OPEN
SOURCE PLATFORMS MAY BE GREATER THAN THE NUMBERS SUGGEST.
Malicious packages
as a percent of
total packages

RUBYGEMS 0.5%NPM 0.4%PYPI 1.2%

3.1 M packages
0.4 % malicious

174,000 packages
1,043 malicious

405,000 packages
5,000 malicious

https://blog.reversinglabs.com/blog/iconburst-npm-software-supply-chain-attack-grabs-data-from-apps-websites
https://blog.reversinglabs.com/blog/threat-analysis-malicious-npm-package-mimicks-material-tailwind-css-tool
https://blog.reversinglabs.com/blog/the-supply-chain-security-guide-roadmap-for-a-post-solarwinds-world
https://blog.reversinglabs.com/blog/the-supply-chain-security-guide-roadmap-for-a-post-solarwinds-world

MALICIOUS NPM PACK AGES WERE T HE BIGGES T SLICE OF T HE PIE
Overall, malicious packages submitted to the npm repository represent the
lion’s share of supply chain attacks that target open source repositories. (Note
that supply chain attacks on third-party, commercial software are harder to
document, since many aren’t publicly disclosed.)

MALICIOUS PY PI PACK AGES:
A QUIE T ER Y E AR BU T S T ILL WAY UP FROM 2020
In contrast to npm, the PyPi repository saw a nearly 60% decrease in
malicious package uploads in 2022, going from 1,493 packages to 3,685 in
2021. But malicious activity since 2020 is still up more than 18,000% over
2020, when just eight malicious packages were detected.

Summertime brought a big spike in malicious activity in 2022: Of the nearly
7,000 malicious npm packages added to the repository, more than 86% were
added during the months of June, July and August. Many of those have been
linked to large-scale campaigns such as the July “CuteBoi” campaign, first
reported by Checkmarx, that placed 1,200 malicious modules on npm that
contained Eazyminer crypto mining software.

The PyPi repository also saw a modest increase in malicious package
submissions in August. Overall, however, 85% of malicious PyPi packages were
found in January. Those were connected to an apparent “proof of concept”
dependency confusion attack, linked to a common account, that targeted
prominent commercial and open source projects, Sonatype reported.

Those campaigns exposed weaknesses in existing open source platforms. For
example, both the January and August surges in malicious packages exploited
automatic submission features that allowed a single user to submit large
numbers of malicious packages, sidestepping security features such as
two-factor authentication. That’s a big reason why the mass publication of
malicious packages to public repositories requires urgent attention.

06

Five ESF
Recommendations for
securing executable code
The ESF also includes
recommendations development
organizations can follow to secure
executable code against exploits.
These include calls to:

• Develop comprehensive security
requirements that include
compliance regulations.

• Create threat models for all critical
software components and
elements of your build pipeline,
including source code
repositories, build systems, and
so on.

• Develop test plans to assess each
requirement providing good “code
coverage.”

• Provide adequate staffing and
testing resources to execute test
plans

• Perform security testing of each
software component in line with
NIST SSDF guidelines, including:

• Static and dynamic application
security testing of all source
code

• Fuzzing of all software
components to verify expected
behaviors

• Periodic penetration testing on a
regular basis

• Documentation of the results of
all security tests

Figure 2. Malicious package additions on npm and PyPi by month.
Source: ReversingLabs

2022-01

2000

0

4000

6000

8000

2022-03 2022-072022-05 2022-09

NPM (created on)

PyPl (created on)

Year-Month

P
ac

ka
ge

 c
ou

nt

https://checkmarx.com/blog/cuteboi-detected-preparing-a-large-scale-crypto-mining-campaign-on-npm-users/
https://checkmarx.com/blog/cuteboi-detected-preparing-a-large-scale-crypto-mining-campaign-on-npm-users/
https://blog.sonatype.com/pypi-flooded-with-over-1200-dependency-confusion-packages
https://blog.reversinglabs.com/blog/new-malicious-packages-in-pypi-repo

According to ReversingLabs data, more than 12,000 malicious npm packages were
submitted through October, 2022, while less than half that number were submitted to PyPi
and just over 1,000 were submitted to the RubyGems repository.

Why the big discrepancy in where malicious packages were placed (or at least where they
were detected)? As with the story of the thief who said he robbed banks because “that’s
where the money is,” malicious actors are focused on npm because that’s where the code
is. Npm currently hosts more than 3.1 million projects, compared to just 407,000 on PyPi
and 173,000 on RubyGems.

However, malicious packages still make up a small slice of the overall open source
ecosystem. For example, there are about 3.1 million npm packages, of which just 0.4% were
malicious. For PyPi, the tally was 5,000 malicious packages out of a population of more
than 405,000, just over 1% of the total. For RubyGems, the number is 0.5% (1,043 malicious
packages detected out of a population of around 174,000 packages).

Malicious open source packages are the (rare) exception rather than the rule. Unfortunately,
it takes just one malicious package to cause a major supply chain disruption. And attackers'
efforts to impersonate popular packages on these platforms means that coming across a
malicious module may be easier than you might think.

07

Karlo Zanki
Threat Researcher, ReversingLabs

More projects also means more developers, more accounts
and more potential avenues of attack.

Figure 3. Total malicious packages to date on npm, PyPi and RubyGems. Source: ReversingLabs

T Y POSQUAT T ING AT TACKS PROLIFERAT ED
Researchers discovered many typosquatting attacks on common open source
repositories in 2022, including the Material Tailwind attack, which
ReversingLabs reported in September. In that attack, malicious actors posted
a package that played on the names of two massively popular libraries,
Tailwind and Material Design, each of which netted millions of downloads. The
Material Tailwind package posed as a helpful development tool, but included a
post-install script that downloaded a password-protected zip file containing a
custom-packed Windows executable capable of running PowerShell scripts.

Likewise, in March, researchers at DevOps software vendor J-Frog discovered
of more than 200 packages on the npm repository that targeted developers
using packages under the @azure scope, as well as @azure-rest,
@azure-tests, @azure-tools and @cadl-lang, with typosquatting attacks. The
legitimate packages targeted in the attack were downloaded tens of millions of
times each week, J-Frog noted at the time.

But npm wasn’t the only open source repository to suffer typosquatting
attacks. In August, ReversingLabs researchers discovered 40 malicious PyPi
packages that, once installed, beaconed to a malicious command-and-control
domain. That domain, python-release.com, pushed malicious code to the
infected systems, including a file containing the Parallax RAT malware. As with
npm, the malicious PyPi modules often used names (e.g. statmodel,
statmodels) as well as command-and-control domains that mimicked the
names of commonly used PyPi packages and support infrastructure.

LE AK ED SECRE T S PL AGUED SECURIT Y T E AMS
Sensitive information leaked through open source modules and platforms was
another prominent theme in 2022 that affected organizations ranging from
Fortune 500 companies to prominent government agencies.

In September, for example, the U.S. Department of Veterans Affairs
acknowledged that a federal IT contractor accidentally published source code
containing sensitive information, including hard-coded administrator account
privileges, encrypted key tokens and database table information, to a public
GitHub repository. Public reports indicated that secret keys used to access at
least 12 applications were exposed after the contractor copied source code
from a VA-managed GitHub account and published it on a personal GitHub
account. The breach persisted for about two months before being detected,
during which time entities associated with six foreign IP addresses copied and
reproduced the code.

Around the same time, Toyota Motor Corp. disclosed that a contract web
developer for its T-Connect telematics system published code for the
T-Connect website, including a private database access key, to a public code
repository, leaking customer emails and other data. The leak, which happened
in 2017, wasn't detected until 2022.

08

Supply Chain Red Flag:
Obfuscated Code
When looking for suspicious
packages in massive open source
repositories, one natural question
is: “what to look for?” One telltale
sign, based on ReversingLabs
research, is the presence of
obfuscated code in public code
repositories. For example, the
Material Tailwind supply chain
attack came to the attention of our
Titanium Platform’s behavior
indicator because it contained
code obfuscated with JavaScript
Obfuscator.

Upon close inspection,
ReversingLabs researcher Karlo
Zanki noted that the package
description used was, in fact,
copied from another npm package
named tailwindcss-stimulus-
components. The threat actor took
special care to modify the entire
text and code snippets to replace
the name of the original package
with Material Tailwind. The
malicious package also
successfully implements all of the
functionality provided by the
original package.

POST-INSTALL SHENANIGANS
But behavior indicators don’t lie.
One of the JavaScript files present
in the package contains obfuscated
code. It also happens that this
tailwindcss-stimulus-scripts.min.cjs
file is also a declared as postinstall
script in package.json file, which
gets executed immediately after
package installation. This is a
popular mechanism for achieving
code execution among threat
actors. In brief: an obfuscated script
that is set to run immediately after
installation is a (big) red flag.

https://blog.reversinglabs.com/blog/threat-analysis-malicious-npm-package-mimicks-material-tailwind-css-tool
https://blog.reversinglabs.com/blog/threat-analysis-malicious-npm-package-mimicks-material-tailwind-css-tool
https://blog.reversinglabs.com/blog/threat-analysis-malicious-npm-package-mimicks-material-tailwind-css-tool
https://jfrog.com/blog/large-scale-npm-attack-targets-azure-developers-with-malicious-packages/
https://blog.reversinglabs.com/blog/new-malicious-packages-in-pypi-repo
https://blog.reversinglabs.com/blog/new-malicious-packages-in-pypi-repo
https://www.fedscoop.com/va-investigates-breach-after-federal-contractor-publishes-source-code/
https://www.fedscoop.com/va-investigates-breach-after-federal-contractor-publishes-source-code/
https://www.reuters.com/technology/toyota-says-information-about-296000-users-its-t-connect-service-leaked-2022-10-07/
https://www.reuters.com/technology/toyota-says-information-about-296000-users-its-t-connect-service-leaked-2022-10-07/
https://www.reuters.com/technology/toyota-says-information-about-296000-users-its-t-connect-service-leaked-2022-10-07/

Such incidents demonstrate the persistent problems and security lapses that
characterize development practices at even sophisticated, well-resourced
organizations.

In June, ReversingLabs researchers analyzed 3 million releases in over
300,000 different projects hosted on the Python Package Index (PyPi)
platform looking for leaks of sensitive information. They detected nearly
30,000 access tokens for Google’s API services and more than 25,000 for
Amazon’s — the most frequently leaked credentials. While in this case many of
the detected tokens were only used for internal tests and demos, that wasn’t
always true for the tens of thousands of other leaked tokens hosted on PyPi.

Even development organizations that are attuned to the risk of secrets leaks
can still find themselves exposing sensitive information on public repositories.
For example, investigations of supply chain breaches reveals that tools used to
prepare packages for publication can inadvertently include files containing
secrets, even when those files have been marked as exempt from publishing to
a public repository.

“Secrets being unknowingly scattered across enterprise environments is not a
new concept. For years, red teams and malicious actors alike have been
scanning network file shares for plaintext credentials to assist them in
escalating their privileges and facilitating lateral movement,” said Charlie
Jones, a Security Evangelist at ReversingLabs. “It is only recently that we have
seen malicious attackers turning their attention to the software supply chain
as they began to recognize source code as an abundant source of
unintentionally embedded secrets which can be used to further attacks."

Figure 4. Number of leaked credentials for projects hosted on the PyPi platform. Sensitive data
leaked in PyPi packages included credentials for API services for both Google and Amazon.

Source: ReversingLabs

google_cloud_api_key

aws_access_key_secret

aws_access_key_id

google_oauth_key

aws_credentials

sendgrid_api_key

ngrok_reverse_tunnel

slack_token

google_oauth_access_token

slack_webhook

facebook_long_token

facebook_short_token

stripe_api_key_generic

mailchimp_api_key

mailgun_api_key

twilio_api_key

mws_auth_token

paypal braintree_access_token

square_oauth_secret

picatic_api_key

square_access_token

razorpay_api_key

outlook_webhook

0 5000 10000 15000 20000 25000 30000 35000

09

Typosquatting up close:
the IconBurst Attack
IconBurst was one of the more
prominent typosquatting attacks
that ReversingLabs uncovered in
2022. Here’s what the
researchers found:

WHAT: IconBurst was a
widespread software supply
chain attack involving malicious
packages offered via the npm
package manager. ReversingLabs
researchers identified more than
50 npm packages containing
obfuscated Javascript designed
to steal form data from
applications or websites using
the malicious packages.

WHO: The actors responsible for
the attack are not known.
However, the malicious packages
use exfiltration domains, with a
consistent naming pattern
suggesting a common actor and
a unified campaign.

WHEN: The attack was first
detected in May, 2022, but dates
to December 2021. New,
malicious packages are posted
periodically to npm.

WHY: Clues buried in some of the
malicious modules suggest they
were designed to steal account
credentials from players of PUBG,
a popular online-multiplayer
video game.

HOW: The malicious modules
collected form data using jQuery
Ajax functions, then exfiltrated that
data to domains controlled by
malicious actors such as
ionicio.com, a play on the
legitimate framework domain
ionic.io. One module,
icon-package, achieved over
17,000 downloads by typosquatting
on the ionicons package before
finally being removed.

https://develop.secure.software/its-not-a-secret-if-you-publish-it-on-pypi
https://develop.secure.software/its-not-a-secret-if-you-publish-it-on-pypi
https://develop.secure.software/its-not-a-secret-if-you-publish-it-on-pypi

Charlie Jones
Security Analyst, ReversingLabs

It is only recently that we have seen malicious attackers
turning their attention to the software supply chain as they
began to recognize source code as an abundant source of
unintentionally embedded secrets which can be used to
further attacks.

The continued appearance of hard-coded credentials in leaked code suggests that
organizations need to do more to enforce basic security hygiene within development
organizations. It also suggests that organizations aren’t undertaking basic security
measures, such as scanning code for credentials, signing keys, and other sensitive
information prior to committing it.

Finally, incidents like the Veterans Administration and Toyota leak underscore the security
risks of decentralized and outsourced development organizations. It also suggests that
the unmanaged migration of proprietary code to open source repositories, often by way of
contractor accounts, poses a risk to the security of development organizations and
visibility challenges to development and security groups. If nothing else, the long intervals
between an initial leak and its detection (months in case of the VA, years in the case of
Toyota) suggest that organizations are not actively monitoring for the presence of
proprietary code or secrets on open source repositories.

VULNERABLE DEPENDENCIES OPENED DOORS T O AT TACKS
Finally, the emergence of the Log4j vulnerability in 2021, and a wave of subsequent
attacks targeting that vulnerable Apache library, underscore the continued risk from
vulnerable software dependencies, as well as the difficulty development organizations
have policing the problem.

Key technology players are trying to tip the scales. These efforts include:

• Google announced its Open Source Software Vulnerability Reward Program (OSS VRP) in
August to reward the discovery of vulnerabilities in Google-managed open source projects
like Golang, Angular and Fuschia.

• The Open Source Software Foundation (OSSF)’s Alpha-Omega project has donated $1.5
million for “critical security work” to the Rust Foundation, the Python Software Foundation
(PSF) and Eclipse Foundation; as well as for Node.js.

• GitHub unveiled Dependabot, a program to keep developers using that platform informed
when a vulnerability is discovered in a software dependency on which they rely.

10

https://security.googleblog.com/2023/08/Announcing-Googles-Open-Source-Software-Vulnerability-Rewards-Program%20.html
https://openssf.org/blog/2022/09/13/alpha-omega-project-announces-over-1-5m-in-grants-to-critical-open-source-projects-and-new-omega-analysis-toolchain/
https://openssf.org/blog/2022/09/13/alpha-omega-project-announces-over-1-5m-in-grants-to-critical-open-source-projects-and-new-omega-analysis-toolchain/
https://docs.github.com/en/code-security/dependabot/dependabot-security-updates/about-dependabot-security-updates

However, the sheer scale of code development taking place in both open source
and proprietary ecosystems makes human-led efforts to police code for
exploitable software flaws nearly impossible.

GitHub’s Advisory Database demonstrates the challenge. Its security team has
reviewed and issued advisories for almost 9,300 vulnerabilities in GitHub
modules across all languages, but more than 177,000 advisories related to
GitHub modules remain unreviewed, many with “critical” ratings. These
advisories, which constitute 95% of the total vulnerability count, aren’t connected
to Github’s Dependabot service, so no warning will be issued for them.

CARBON TV
TOYOTASAMSUNG

A YEAR OF
SPILLED SECRETS

Hacking web applications is so
“last year.” These days, raw source
code is a major target for malicious
actors, who have discovered that
code shared to public repositories
often contains sensitive
information such as system
credentials and access tokens for
protected, internal resources. Here
are some of the prominent
incidents from 2022 in which
organizations found sensitive
information exposed via
their software supply chain:

INCIDENT #1:
SAMSUNG, MARCH 2022

The Lapsus$ hacking group
leaked Samsung’s source code.

After scanning it, GitGuardian
found 6,695 secrets in the
leaked source code.

GitGuardian’s results also
showed that just over 600
authentication tokens are
exposed in the source code.

Toyota discovered that a portion of its
T-Connect web site source code was
accidentally published to a GitHub
repository belonging to a third-party
contractor hired to author the site.

The leaked source code contained an
access key to the data server that
stored customer email addresses and
phone numbers.

An unauthorized third-party then
accessed the details of close to
300,000 Toyota customers over the
course of nearly five years.

INCIDENT #3:
TOYOTA, OCTOBER 2022

INCIDENT #2:
CARBON TV, SEPTEMBER 2022

CarbonTV, a U.S.-based streaming service,
left a server containing its source code
open to compromise via an insecure API.

Researchers at Cybernews found that
poor access control of the .git folder
provided access to secrets contained in
the code.

The leaked source code contained several
kinds of secrets, including full access
credentials, giving attackers the ability to
modify content shown on the streaming
service.

Sources: GitGuardian, Cybernews, Security Boulevard

https://github.com/advisories
https://blog.gitguardian.com/samsung-and-nvidia-are-the-latest-companies-to-involuntarily-go-open-source-potentially-leaking-company-secrets/
https://cybernews.com/security/streaming-platform-leaks-admin-credentials-source-code/
https://securityboulevard.com/2022/10/secrets-in-code-combined-with-code-leaks-exposed-data-for-300000-toyota-customers/

12

PROT ES T WARE SUPPLY CHAIN AT TACKS EMERGED AS A NEW T HRE AT
In the last year, manipulation of open source modules has sown chaos among
downstream developers and applications. In 2022, so-called “protestware,”
emerged, in which maintainers of legitimate applications decide to weaponize
their software in service of some larger cause (be it personal or political).

In January, for example, downstream applications with dependence on the
popular npm libraries ‘colors.js’ and ‘faker.js’ found their applications caught in
an infinite loop, printing ‘LIBERTY ‘LIBERTY LIBERTY’ followed by a sequence
of gibberish non-ASCII characters. The incident was intentional — an act of
protest by the maintainer “Squires” for what he perceived as uncompensated
use of his libraries by for-profit firms.

Then, in March, Brandon Nozaki Miller, the developer of node.ipc, pushed an
update of his popular open source library that sabotaged computers in Russia
and Belarus in retaliation for Russia’s invasion of Ukraine (and Belarus’s
support for that invasion). The new release included an obfuscated function
that checked the IP address of developers who used the node.ipc module in
their projects. IP addresses that geolocated to either Russia or Belarus saw
node.ipc wipe files from their machines and replaced them with a heart emoji,
according to published reports.

In July, the developer Markus Unterwaditzer temporarily deleted code for his
popular and widely used atomicwrites Python library from the popular code
registry PyPI in protest over mandated two-factor authentication for
maintainers of what are deemed “critical” projects—a requirement that is in no
small part due to incidents of maintainers’ accounts being hijacked and
abused. Unterwaditzer said he found the requirement “annoying” and “entitled.”

Such incidents, though rare, make a strong case for the need for increased
security and scrutiny of the code hosted on platforms like GitLab, GitHub or
npm, that goes beyond research on software vulnerabilities and exposures.

As scrutiny of both open source and common development tools and
platforms grows, the security picture for development organizations and their
customers is becoming increasingly messy, according to a ReversingLabs
analysis of the National Vulnerability Database (NVD).

Vulnerabilities in platforms such as GitLab have created openings for
impersonation attacks and account takeovers that hold code repositories
hostage. Beyond that, account hijacking subsequent to phishing or other
attacks on maintainers has stung prominent firms and resulted in the theft of
proprietary code and sensitive data.

https://www.secure.software/reports/reversinglabs-nvd-analysis-2022-a-call-to-action-on-software-supply-chain-security
https://www.wired.com/story/developer-altered-open-source-software-to-wipe-files-in-russia/
https://github.com/untitaker/python-atomicwrites
https://techcrunch.com/2022/07/27/protestware-code-sabotage/
https://techcrunch.com/2022/07/27/protestware-code-sabotage/
https://github.com/untitaker/python-atomicwrites/issues/61

13

Fears of supply chain attacks are growing
The reality of software supply chain attacks hasn’t been lost on developers
and those working for software firms.

To assess organizations’ levels of awareness about supply chain risks,
ReversingLabs commissioned a survey of 307 executives, as well as
technology and security professionals at software publishers. The survey,
conducted by Dimensional Research, found that concerns about software
supply chain attacks and the risks that accompany greater reliance on open
source and third-party libraries are growing.

For example, when asked which software security issues posed a risk to their
organizations, 63% of respondents said that threats and malware lurking in
open source repositories or exploits such as the attacks on SolarWinds and
CodeCov were a concern. That’s just behind the 66% who said “exploitable
software vulnerabilities” posed a risk. Similarly, when asked what is increasing
software security risk to their organizations, nearly all (98%) pointed to
third-party software, open source software, and software tampering as
contributors.

Other supply-chain related issues also ranked high among respondents. More
than half (51%) said that the inability to detect software tampering posed a
security risk, while 40% cited vulnerabilities in CI/CD toolchains as a concern.
But the disconnect between that perception of risk and the embrace of
effective supply chain risk management and mitigation strategies was stark.
Thorough software audits during and after development were a rarity, with
fewer than four in 10 respondents saying their organizations were capable of
detecting tampering with developed code, and less than 10% reviewed
software at each stage of the production lifecycle for evidence of tampering,
leaks or compromises.

Adoption of common software supply chain security tools, such as SBOMs,
was also low. A minority of respondents said they used them. Those who did
not cited fears about complexity and administrative overhead associated with
SBOMs. That helps explain the “why” behind many of the supply chain
breaches that make the headlines, but it doesn’t bode well for organizations
worried about the prospect of further SolarWinds-style attacks.

What’s next? Looking ahead to 2023
SUPPLY CHAIN AT TACKS WILL ACCELERAT E — AND DIVERSIF Y
One unmistakable trend in 2022 has been the increasing cadence of attacks
and compromises targeting software supply chains, including attacks
targeting both open source and proprietary third-party software. To date, the
growth in these attacks has been relatively linear, while incidents of malicious
packages have declined on some platforms (such as PyPi).

https://www.reversinglabs.com/resources/flying-blind-software-firms-struggle-to-detect-supply-chain-hacks
https://www.reversinglabs.com/resources/flying-blind-software-firms-struggle-to-detect-supply-chain-hacks

14

Still, the rate of growth compared to 2020 remains high. In 2023 the number of malicious
packages detected on those platforms will increase again, though security measures taken
by platform providers may slow that growth. That, in turn, may push malicious actors to
look for other vulnerable links in software supply chains.

PL AT FORM OWNERS WILL BOOS T T HEIR DEFENSES
Recent months have seen development tools and platform providers introduce features to
harden their environments and developer accounts from attack. GitHub is a great example.
The Microsoft-owned code repository embraced OAuth in 2020, and in 2021 banned the
use of passwords for use in authenticating Git operations altogether. In 2022 GitHub
continued to refine its security posture, introducing fine-grained personal access tokens for
use in scripts to replace more broad access that has proven problematic when tokens have
been exposed via public repositories. And PyPi, facing the scourge of account takeovers, in
July made two-factor authentication mandatory for use with critical Python projects.

Expect to see a continuation of these hardening efforts in 2022, as both the scope and
level of supply chain threats increase. Among the changes to look for are features such as:

• Malicious package detection. As supply attacks proliferate, publishers will introduce new
features designed to counter known risks. Scanning for anomalous version numbering
(such as sudden jumps in version) could prevent dependency confusion attacks. Checking
manifest files for significant changes, such as the addition of new pre- or post installation
scripts, could also thwart a wide range of supply chain attacks via malicious or altered
packages.

• Integrated third-party package scanners. Tighter integration with package scanning
platforms can prevent malicious code from infiltrating commons platforms like npm, PyPi,
RubyGems, Dockerhub and so on. Expect to see more platforms partnering with third-party
scanning providers to help keep bad code and images out.

• IP range locks for package publishing. These are already popular outside of the
development world. (Most people are familiar with the “someone is trying to log into your
account from an unknown device” warnings.) They could have the same benefit for
development teams by limiting access to repositories to a set of predefined IP addresses
from which package updates can be published. That would raise the bar for attackers who
try to upload malicious code to package repositories, requiring them to know the allowed IP
addresses and then get one of those allowed addresses assigned to them. It might also
give development organizations an early warning of attempts to infiltrate CI/CD pipelines.

• Integrated password-reuse checks. So-called “layer 8” (aka “humans”) is still a big source
of risk for development organizations. Features like password re-use checks for accounts
would help pick low-hanging fruit like developer accounts that are reusing passwords
exposed in prior breaches or are already available on the dark web.

https://github.blog/changelog/2021-08-12-git-password-authentication-is-shutting-down/
https://github.blog/changelog/2021-08-12-git-password-authentication-is-shutting-down/
https://devclass.com/2022/10/19/github-fixes-over-broad-token-permissions-with-fine-grained-personal-access-tokens-and-controversial-enforced-expiration/
https://thehackernews.com/2022/07/pypi-repository-makes-2af-security.html

15

SUPPLY CHAIN SECURIT Y AU T OMAT ION WILL TAK E HOLD
As application development has become less centralized and faster paced, responsibility
for security has become more challenging. With the embrace of agile “DevOps”
development methods, work and responsibility are distributed. It is unlikely that one person
or group has a holistic view and understanding of an entire application. At the same time,
legacy, manual security review processes aren’t suited to fast-paced, modern CI/CD
pipeline release cycles. The solution is automation. In the coming year more supply chain
security processes will be automated as development organizations increase scrutiny of
native, third-party, and open source code while simultaneously increasing the pace of
development.

FEDERAL GUIDANCE WILL S TART T O BIT E
Expect an increased focus on the cyber risks lurking in open source code in the next
12 months.

In the public sector, the OMB Memorandum calls out the need for software vendors doing
business with the federal government to attest to the security of open source software, for
example by using a certified FedRAMP Third Party Assessor Organization (3PAO).

In addition, pending Securing Open Source Software Act of 2022 (PDF) legislation would
charge federal CIOs with focusing on open source risk, as well as empower the CISA to
produce a framework for handling open source code risk and to perform automated
analysis of open source software components used by federal systems (read more about
the Act here).

MORE ORGANIZ AT IONS WILL CRE AT E OPEN SOURCE PROGRAM OFFICES
In the private sector, growing awareness of the extent of open source risk driven by
high-profile flaws like Log4j/Log4Shell and of organizations’ deep reliance on open source
code is likely to inspire investments in shoring up critical open source projects. But it’s an
open question as to whether that will spur organizational shifts aimed at reducing
exposure to open source risks.

https://www.fedramp.gov/assessors/
https://www.govinfo.gov/content/pkg/BILLS-117s4913is/pdf/BILLS-117s4913is.pdf
https://openssf.org/blog/2022/09/27/the-united-states-securing-open-source-software-act-what-you-need-to-know/
https://openssf.org/blog/2022/09/27/the-united-states-securing-open-source-software-act-what-you-need-to-know/

16

The challenge is that many software supply chain risks, including those centered on open
source software, boil down to cultural, rather than technical issues. The embrace of agile
development and DevOps methodologies has accelerated development and release cycles,
while security is too often still treated as an afterthought.

With those cultural impediments in mind, one development that may begin to get traction,
Open Source Program Offices (OSPOs), will be created by more development organizations
in the coming year as a way to assess open source exposure and formalize security
practices.

As described by the Open Source Security Foundation, an OSPO can help spearhead open
source security initiatives, including those related to open source code use, distribution,
selection, auditing, and so on. It can also take a lead role in training developers, ensuring
legal compliance, and promoting engagement with the larger open source community.

The Open Source Software Act envisions OSPOs for federal agencies, but they’re also
applicable to private-sector organizations that need a governing body to oversee the use
and management of open source software.

Guidance: Four steps to address supply chain security
The growing threat of software supply chain attacks demands new approaches to securing
applications and services, both in development and in deployment. Here are four
techniques organizations should leverage to combat growing software supply chain risks:

BROADEN YOUR FOCUS T O INCLUDE SUPPLY CHAIN RISKS
Historically, software security has focused on improving the quality of the underlying
software, for example by embracing secure software development practices that make it
less likely that developers will create common vulnerabilities such as buffer overflows or
injection flaws.

In the last decade, organizations across both public and private sectors have embraced
secure software development and application testing technologies including static- and
dynamic application security testing (SAST and DAST), and software composition analysis
(SCA). These tools are invaluable parts of modern, agile software development.

But focusing narrowly on vulnerability management and code quality falls short in the
larger context of software supply chain security, which must also encompass growing
supply chain threats like malware, malicious insiders and other CI/CD compromises.

"Over 50% of the practices defined within the NIST Secure Software Development
Framework (SSDF) focus on the protection, identification, and remediation of vulnerabilities
within software,” says ReversingLabs’ Charlie Jones.

“Although the detection and remediation of vulnerabilities is critical to uplifting the security
posture of software, the presence of vulnerabilities within a software package does not
necessarily indicate that the package has been compromised, and presents an immediate
threat to an acquiring organization,” Jones said.

https://github.com/todogroup/ospodefinition.org
https://openssf.org/blog/2022/09/29/how-ospos-can-be-a-key-lever-for-open-source-sustainability-and-security/

17

As the attacks and supply chain incidents of the last 12 months reveal, organizations
involved in software creation need ways to identify vulnerabilities. But given the scale of
vulnerabilities being reported, they also need an easy way to triage and prioritize the
vulnerabilities that matter most: remotely exploitable flaws affecting critical systems.
That’s the idea behind CISA’s Vulnerability Exploitability eXchange (VEX) security advisory
mechanism.

Beyond finding and fixing vulnerabilities, however, development organizations need to stay
attuned to other exposures (the “E” in “CVE”). One example: unauthorized code changes to
software that introduce potentially malicious behaviors such as being able to change
account privileges or reboot the system. Such changes often indicate compromises and
precede attacks on production systems.

To address these risks, expand your organization’s threat detection capabilities to
encompass software tampering, malicious or compromised dependencies and other
CI/CD compromises that may result in the introduction of malicious code or behaviors.
Binary scanning and other behavioral detections that focus on compiled code will help
prevent more SolarWinds-style compromises.

SHIF T LEF T T OGE T HER: FOS T ER DE V AND SOC COORDINAT ION
In the wake of the volume of supply chain attacks that occurred in 2022 it’s clear that
threats to development organizations and pipelines are growing, and the response to those
threats can’t be confined to development teams.

After all, a cursory review of supply chain attacks, from SolarWinds to more recent
campaigns leveraging malicious PyPi modules, shows that attacks on development supply
chains and pipelines are merely a means to an end for malicious actors. And the end in
question is usually indistinguishable from non-supply chain attacks: lateral movement, data
theft, and the placement of malware for persistence or extortion (e.g. ransomware).

That’s why ReversingLabs researchers expect to see greater coordination between
development and security operations teams to share intelligence about supply chain
threats in 2023.

The advent of dependency confusion and typosquatting attacks exposes a weakness in
the DevSecOps paradigm: the inherent trust placed in the integrity of third-party and
open-source software supply chains by individual developers and larger development
organizations.

Already there is evidence that such attacks are in the toolbelt of offensive actors. To ensure
that such initial forays don’t escape the notice, security operations centers need to follow
attackers as they shift left, broadening their mandate to encompass monitoring of
software supply chain threats as part of their overall risk monitoring.

How to accomplish that shift is a matter for debate. J. Paul Reed, a DevOps expert and
specialist on Netflix's Critical Operations and Reliability Engineering (CORE) team,
advocates bringing release engineers and security engineers together to coordinate their
activities.

https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Aprill2022.pdf
https://blog.reversinglabs.com/blog/a-partial-history-of-software-supply-chain-attacks
https://www.forbes.com/sites/forbestechcouncil/2022/07/06/shift-left-together-coordinating-a-joint-response-to-supply-chain-threats/?sh=27636fdc13f1
https://www.forbes.com/sites/forbestechcouncil/2022/07/06/shift-left-together-coordinating-a-joint-response-to-supply-chain-threats/?sh=27636fdc13f1
https://therecord.media/how-a-pentesters-attempt-to-be-as-realistic-as-possible-alarmed-cybersecurity-firms/
https://develop.secure.software/the-state-of-devsecops-where-weve-been-where-were-going-and-why

“A lot of the concerns that build and release engineers have are similar to the ones that
security engineers have. The problems that keep the security engineer up at night are the
same ones that keep the release engineer up at night,” he says.

For example, both security engineers and release engineers have the same interest in
ensuring the provenance of open source and third-party software components, keeping the
software components updated and vetting them for vulnerabilities and other issues that
could affect application confidentiality, integrity, and availability.

With insights into supply chain threats and attacks, security engineers are already
becoming de facto release engineers, Reed notes. Besides, closer coordination earlier in
the design and development stages can avoid last-minute holdups imposed by security
teams — the kind of “scan and scold” dynamic that can antagonize development
organizations.

HOME IN ON OPEN SOURCE RISKS
Threats and attacks that come by way of open source software are not new. As far back as
2003, an unknown hacker added a backdoor to the Linux kernel, while “prototype pollution,”
where attackers introduce malicious code to otherwise trustworthy software artifacts, has
become more common. One study found that prototype pollution was detectable in more
than 25% of all open source projects the authors reviewed. More recently, the North Korean
state-sponsored hacking group known as Lazarus introduced Trojan horse code into open
source software, including apps like PuTTY, KiTTY, TightVNC, Sumatra PDF Reader for use
in targeted attacks aimed at cyberespionage, according to Microsoft.

In 2023, development organizations need to make open source risk a priority. That means
developing a detailed understanding of your organization's use and dependence on open
source modules, and closely monitoring those open source modules for evidence of
tampering or compromise.

INVES T IN PROAC T IVE T HRE AT HUN T ING
Guidance from the federal government is encouraging development organizations to think
more broadly about their software supply chain risk and to expand the scope of their
defensive measures beyond vulnerability discovery and patching. That’s a natural response
to the current threat landscape, where the breadth of attack techniques that the supply
chain is exposed to spans the entire software development, packing, delivery, and use
lifecycle.

Investing in technologies that enable proactive threat hunting within the software supply
chain will be increasingly important for identifying sophisticated supply chain attacks
before they can materialize.

Development organizations need to invest in tools that are capable of identifying malicious
components that could be hiding in open source and third party software packages. Threat
hunting technologies such as binary analysis, file reputation and threat intelligence
services can help identify those risks, while applying open-source YARA rules internally can
help organizations detect malicious software components such as malware downloaders,
viruses, trojans, exploits and ransomware.

18

https://snyk.io/series/open-source-security/report-2020/
https://snyk.io/series/open-source-security/report-2020/
https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/
https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/
https://www.reversinglabs.com/products/open-source-yara-rules

Conclusion: To detect software supply chain tampering,
look beyond the code
If data from the past three years is any indication, attacks on software supply chains will
increase in both frequency and severity in 2023, as they have in each of the last three
years. That, along with new regulations and guidance intended to address supply chain
risk, will put new pressure on development organizations and enterprises.

Going forward, ReversingLabs researchers anticipate a shift in both security thinking and
investment. With the Log4Shell exploit barely a year old, organizations need to invest the
resources and time to assess their exposure to risk from open source components, with an
eye to spotting targeted dependency confusion attacks and avoiding more passive
typosquatting scams that look to push malicious code into sensitive organizations.

Following a spate of incidents in 2022, expect to see increased scrutiny of both internal
and shared code for evidence of secrets such as access credentials for cloud-based
services like AWS and Azure; SSH, SSL and PGP keys, and assorted other access tokens
and API keys.

Finally, organizations should look beyond mere code vulnerabilities and secrets to assess
the risk posed by software tampering. Binary scanning and behavioral analysis of compiled
binaries will need to become a standard part of security reviews and quality assurance. All
of this will require substantial changes in how development teams approach software
security, as well as the acquisition of new tools and talent capable of carrying out
fine-grained security assessments at each stage in the development pipeline. As the
stakes and cost of failure increases, however, these investments will more than pay for
themselves over time.

19

Learn how ReversingLabs
secure.software can help you

perform critical security checks
before you deploy software

LEARN MORE

ReversingLabs supports many languages and repository

packages to deliver software supply chain protection for

CI/CD workflows, containers and release packages.

Why Malware Detection Isn’t Enough Protection

Against Software Supply Chain Attacks

Download Solution Brief

What You Need to Know: How to Combat

the IconBurst Software Supply Chain Attack

Watch Deminar

Flying Blind: Software Firms Struggle

To Detect Supply Chain Hacks

Download Report

Not all SBOMs Are the Same.

Choose Wisely!

Read Blog

Copyright 2022 ReversingLabs. All rights reserved. ReversingLabs is the registered trademark of ReversingLabs US Inc.
All other product and company names mentioned are trademarks or registered trademarks of their respective owners.

Worldwide Sale:
+1.617.250.7518

sales@reversinglabs.com

Additional Resources:

https://www.reversinglabs.com/resources/why-malware-detection-isnt-enough-protection-against-software-supply-chain-attacks
https://www.reversinglabs.com/resources/flying-blind-software-firms-struggle-to-detect-supply-chain-hacks
https://www.reversinglabs.com/resources/what-you-need-to-know-how-to-combat-the-iconburst-software-supply-chain-attack
https://blog.reversinglabs.com/blog/not-all-sboms-are-the-same-choose-wisely
mailto:sales@reversinglabs.com
https://www.secure.software/

