
TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary1

TRUST DELIVERED

©2024 ReversingLabs – Confidential and Proprietary

YARA Rules 101
Learn to Write & Use High-Quality Rules for Threat Hunting & Detection

November 6, 2024

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary2 TRUST DELIVERED

Today’s Speakers

2

Danil Panache

Solutions Architect,

RL

Paul Roberts

Director, Editorial &

Content, RL

Laura Dabelic

Threat Analyst,

RL

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary3 TRUST DELIVERED

RL At-A-Glance

40B+ 8X 60+
Searchable Threat Repository Larger Than Nearest Competitor Cybersecurity Companies Trust RL

FASTEST

Software/File Deconstruction

3M
Malware Identified Daily

20M
Files Analyzed Daily

300
Employees Globally 5 Star Rated Partner Program Recognized for SSCS Solution

Verizon Business

DBIR
Report Contributor

3

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary4 TRUST DELIVERED

Agenda

• A brief history of YARA

• What YARA rules are (and aren’t) good for

• Applications of YARA Rules

• Malware Hunting & Retro Hunting

• Email Analysis

• Brand Protection

• Compliance and DLP

• What makes a good YARA?

• Sources of reliable YARA rules

• How to evaluate YARA quality

• How to write and tune your own YARA rules

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary5 TRUST DELIVERED5 ©2024 ReversingLabs – Confidential and Proprietary

A Brief History of YARA

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary6

● YARA = “Yet Another Recursive Acronym”

● Developed by Victor Alvarez (@plusvic) at

VirusTotal

● Released on GitHub in 2013

○ virustotal.github.io/yara

○ A tool for simplifying the use of textual or

binary patterns to detect malware or other

threats lurking within IT environments

○ Multi-platform (Windows, Linux, Mac OS X)

accessible via CLI or Python scripts (using

yara-python extension)

● Scores of security firms, public agencies and

individuals/nonprofits generate YARA rules

A Brief History of YARA

http://virustotal.github.io/yara

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary7 TRUST DELIVERED7 ©2024 ReversingLabs – Confidential and Proprietary

Applications of YARA Rules

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary8 TRUST DELIVERED8 ©2024 ReversingLabs – Confidential and Proprietary

Malware Hunting

YARA rules for Malware Hunting are used in a forward-
looking perspective. When files flow through an
organization, having the ability to efficiently scan them
for potential malicious elements at scale is imperative.

Retro Hunting

YARA rules for Retro Hunting look in the other direction
- where have similar files shown up before? This can
start with a single sample, sometimes pulled as part of
incident response procedure, and is fine-tuned to
reduce false positive hits while still encompassing the
unique identifiers of potentially malicious elements.

Ability Example

Check file types with header magic uint16(0) == 0x5A4D matches PE files

Hunt for process injection APIs $sus = "VirtualAlloc" or $sus2 = "WriteProcessMemory"

Match hex patterns unique to malware $hex = { 4D 5A ?? ?? 45 ?? 78 } for specific variants

Use wildcards and ranges for flexibility { 4D 5A [4-8] 45 } matches patterns with 4-8 bytes between

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary9

Malware Hunting Example

rule sample_malware_loader {

meta:

description = "Basic detection patterns for potential malware"

author = "Security Research Example"

reference = "For educational and research purposes"

date = "2024-11"

strings:

// Common malware string decryption routine

$decrypt = { 8B 45 ?? 83 C0 ?? 89 45 ?? 8B 45 ?? 0F BE 00 }

// Unique API hashing pattern

$api_hash = { 33 D2 6A ?? 68 ?? ?? ?? ?? 8B F9 E8 }

// Common C2 communication patterns

$c2_pattern1 = { 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? 68 ?? ?? ?? ?? E8 }

$c2_pattern2 = { 8B 4D ?? 83 C1 ?? 51 68 ?? ?? ?? ?? E8 }

// Known malware export names

$export1 = "ServiceMain" fullword

$export2 = "DllRegisterServer" fullword

condition:

uint16(0) == 0x5A4D and

$decrypt and

$api_hash and

1 of ($c2_pattern*) and

1 of ($export*)

Metadata - documents who

wrote it, when, what it

detects, and why it exists

Assembly code patterns,

aligning to how the malware

performs decryption, API

hashing to resolve Windows

API calls, and

command/control

communication

Function names that malware

uses to pose as legitimate

Conditions that need to be

met for the rule to trigger

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary10 TRUST DELIVERED10 ©2024 ReversingLabs – Confidential and Proprietary

Email Analysis

As ubiquitous as emails are, it’s important to scan email content and attachments to detect phishing attempts,
malicious documents, and social engineering patterns. Similar to a spam filter but with deeper and more granular
inspection capabilities, these can help identify a large array of potential threat vectors.

Ability Example

Find suspicious sender patterns $domain = /microsoft-support.com|micros0ft.com/

Match urgent language indicators $urgent = /urgent|immediate action|account.*suspended/

Detect malicious attachment types uint32(0) == 0x464C457F matches ELF files

Look for phishing markers $sus = "kindly verify your {username|password|account}

Spot credential harvesting forms $form = /<input.type=["']password["'].>/

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary11

Email Analysis Example (strings and condition)

strings:

// Suspicious sender patterns

$fake_domain1 = //g[0o]{2}g[1l]e[-]?(?:docs|security|verify|auth)/ nocase ascii wide

$fake_domain2 = /paypal-{0,1}secure\.[a-zA-Z]{2,3}/ nocase

$fake_domain3 = /app[1l]e[-]?(?:id|verify|secure|support)/ nocase

// Urgent language patterns

$urgent1 = "immediate action required" nocase

$urgent2 = "account suspended" nocase

$urgent3 = "unusual activity" nocase

$urgent4 = "security alert" nocase

$urgent5 = /login attempt from .{1,20} location/ nocase

// Common phishing phrases

$phish1 = "verify your identity" nocase

$phish2 = "confirm your account" nocase

$phish3 = "update your payment" nocase

$phish4 = /click\s+here\s+to\s+(verify|confirm|update)/ nocase

// Suspicious form elements

$form1 = "<input" nocase

$form2 = "type=\"password\"" nocase

$form3 = "name=\"card" nocase

$form4 = "cvv" nocase

// Social engineering keywords

$social1 = "gift card" nocase

$social2 = "winning" nocase

$social3 = "inheritance" nocase

$social4 = "invoice" nocase

condition:

// Main logic to detect suspicious emails

(

// Suspicious sender with urgent language

(any of ($fake_domain*) and 2 of ($urgent*))

or

// Phishing attempts

(2 of ($phish*) and 2 of ($form*))

or

// Social engineering attempts

(2 of ($social*) and any of ($urgent*))

)

and

// Size constraint to avoid false positives on tiny files

filesize > 200

Commonly spoofed domains

to appear legitimate

Common language patterns

to denote urgency, frequently

a tactic in email attacks

filesize limitations to

avoid potential false

positives

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary12 TRUST DELIVERED12 ©2024 ReversingLabs – Confidential and Proprietary

Brand Protection

Much like the e-mail use case, preventing bad actors from impersonating your brand and reputation for their own
machinations can be solved via YARA rules as well. This is often most powerful when combined with email rules as
well, as emails are a very common avenue for unauthorized use of company assets (such as logos, products, and
company name).

Ability Example

Detect logo color patterns $brand_blue = { 00 84 E9 } for specific RGB values

Find company name variations $name = /(acm[e3]|@cme|acc?me)./ for "acme"

Match product identifiers $product = /Phone\s*(1[2-4]|1[2-4]\s*Pro)/ for Phone models

Spot counterfeit markers $sus = /authentic.*[5-9][0-9]%.*discount/ for suspicious pricing

Look for domain squatting $domain = /acme-(support|service|store)./ for fake Acme domains

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary13

Brand Protection Example (strings and condition)

strings:

// Company name variations (example using "Acme")

$brand1 = "Acme" nocase

$brand2 = "4cme" nocase // replacing the “a” with “4”

$brand3 = /[@A]cm[e3]?/ nocase // Catches Acme,@cm,acm3, etc.

// Domain squatting patterns

$domain1 = /acme[-.]?(store|shop|outlet)\./ nocase

$domain2 = /acme[-.]?auth(orized|entic)\./ nocase

$domain3 = /official[-.]?acme/ nocase

// Product identifiers

$product1 = "RoadRunner Pro" nocase

$product2 = "Coyote Traps" nocase

$product3 = /Acme\s*Rockets/ nocase

// Counterfeit indicators

$counterfeit1 = /authentic.*acme.*([5-9][0-9]|100)%.*off/ nocase

$counterfeit2 = /wholesale[^.]{1,30}acme/ nocase

$counterfeit3 = "factory direct" nocase

$counterfeit4 = "replica" nocase

// Logo detection - specific RGB values

$logo_color1 = { 00 00 00 } // ACME Black

$logo_shape1 = {89 50 4E 47 0D 0A 1A 0A [12-40] FF FF FF [2-8] 00 00 00 [4-

12] 00 00 00 [8-24] 00 00 00 [2-8] FF FF FF

condition:

// Main detection logic

(

// Domain squatting detection

(any of ($brand*) and any of ($domain*))

or

// Counterfeit product detection

(

any of ($product*) and

2 of ($counterfeit*)

)

or

// Logo abuse detection

(

$logo_shape1 and

$logo_color1 and

@logo_color1 < @logo_shape1 + 1000

)

)

and

// Avoid tiny files

filesize > 500

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary14 TRUST DELIVERED14 ©2024 ReversingLabs – Confidential and Proprietary

Compliance/DLP

DLP is a logical use case for YARA rules, although other methods and techniques exist that can technologically
supersede YARA for detection. These rules can look for sensitive information patterns such as credit card numbers,
SSNs, API keys, etc.

Ability Example

Match PII patterns $ssn = /[0-9]{3}-[0-9]{2}-[0-9]{4}/ for SSN format

Find API and access keys $aws_key = /AKIA[0-9A-Z]{16}/ for AWS keys

Detect credit card numbers $cc = /4[0-9]{12}(?:[0-9]{3})?/ for Visa cards

Spot healthcare data $medical = /\bICD-(?:9|10)\b.{0,20}[A-Z][0-9]{2}.?[0-9]?/ for ICD codes

Identify source code leaks $code_secret = /(password|secret|key)\s*=\s*["'][^"']{8,}["']/

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary15

Compliance/DLP Example (strings and condition)

strings:

// PII Detection

$ssn = /[0-9]{3}[-\s]?[0-9]{2}[-\s]?[0-9]{4}/

$email = /[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,6}/

$phone = /(\+\d{1,2}\s)?\(?\d{3}\)?[\s.-]\d{3}[\s.-]\d{4}/

// Financial Information

$credit_card1 = /4[0-9]{12}([0-9]{3})/ // Visa

$credit_card2 = /5[1-5][0-9]{14}/ // Mastercard

$credit_card3 = /3[47][0-9]{13}/ // American Express

$bank_account = /\b[0-9]{8,12}\b/

// Healthcare Information

$medical_record = /\bMRN\s*[:=#]\s*[0-9]{6,12}\b/

$icd_code = /\bICD-(9|10)\b.{0,20}[A-Z][0-9]{2}\.?[0-9]?/

$hipaa_terms = /(PHI|Protected Health Information|HIPAA)/

// API Keys and Credentials

$aws_key = /AKIA[0-9A-Z]{16}/

$api_key = /(api[_-]key|api[_-]secret|access[_-]token)[\s=:]["'][0-9a-zA-Z]{32,}["']/

$private_key =

/(BEGIN|END)\s+(RSA|DSA|EC|OPENSSH)\s+PRIVATE\s+KEY/

// Internal Document Markers

$confidential = /(CONFIDENTIAL|INTERNAL USE ONLY|DO NOT SHARE)/

$project_code = /Project[_\s]+(Name|ID):\s*[A-Za-z0-9_]{3,}/

// Source Code Secrets

$hardcoded_secret = /(password|secret|key)\s*=\s*["'][^"']{8,}["']/

$config_file = /(config\.json|\.env|\.ini|\.cfg)$/

condition:

// Trigger on combinations of sensitive data

(

// PII Combination

(any of ($ssn, $email, $phone) and $confidential)

or

// Financial Data

(any of ($credit_card*) and $bank_account)

or

// Healthcare Data

(any of ($medical_record, $icd_code) and $hipaa_terms)

or

// Code and Credentials

(any of ($aws_key, $api_key, $private_key) and $config_file)

or

// Multiple PII in same file

(2 of ($ssn, $email, $phone, $credit_card1, $credit_card2, $credit_card3))

)

and

// File must be big enough to be a document

filesize > 50 and

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary16 TRUST DELIVERED16 ©2024 ReversingLabs – Confidential and Proprietary

What Makes a Good YARA Rule?

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary17 TRUST DELIVERED

• YARA rules are used for static analysis, but
malware is malleable

• Work better on threats with consistent structure
• Susceptible to polymorphic and dynamic threats

Use of GO and RUST languages complicate YARA
detection

• Need a talented YARA author
Simply copying and pasting strings (section headers

from .py files) or byte code isn’t enough
Brittle YARA rules will break with any code change

• YARA “noise” (false positives) also a big
concern

• Creating your own YARA rules takes practice,
dedication

Big dividends in terms of threat protection and readiness

Evaluating YARA Quality

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary18

ReversingLabs YARA Rules

Written by RL threat analysts, threat hunters, etc.

Detection rules focused on precision (zero false positives)

Common goals:

➔ Clearly named, extensive byte patterns (20+ lines)

➔ Readable, transparent conditions

➔ Match up to unique malware functionality

➔ Code byte patterns preferred over strings

Work with YARA version 3.2.0 or greater

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary19 TRUST DELIVERED

ReversingLabs also recommends YARA rules from the following
sources:

➔ Cybersecurity and Infrastructure Security Agency (CISA)

US-CERT

➔ https://yaraify.abuse.ch/yarahub/
➔ https://github.com/InQuest/awesome-yara#rules
➔ https://valhalla.nextron-systems.com/
➔ https://github.com/Neo23x0/signature-base

Other Reliable Sources of YARA Rules

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary20 TRUST DELIVERED20 ©2024 ReversingLabs – Confidential and Proprietary

Writing (and Tuning) Your Own YARA Rules

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary21 TRUST DELIVERED21

QUESTIONS

©2024 ReversingLabs – Confidential and Proprietary

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary22 TRUST DELIVERED

YARA Resources

https://www.reversinglabs.com/open-source-yara-rules

https://github.com/reversinglabs/reversinglabs-yara-rules

https://www.reversinglabs.com/blog/writing-detailed-yara-rules-for-malware-detection

https://www.reversinglabs.com/open-source-yara-rules
https://github.com/reversinglabs/reversinglabs-yara-rules
https://www.reversinglabs.com/blog/writing-detailed-yara-rules-for-malware-detection

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary23 TRUST DELIVERED

Upcoming RL Virtual Events

https://www.reversinglabs.com/webinar/webinar-line-up

https://www.reversinglabs.com/webinar/webinar-line-up

TRUST DELIVERED©2024 ReversingLabs – Confidential and Proprietary24

Thank You

©2024 ReversingLabs – Confidential and Proprietary

	Slide 1: YARA Rules 101
	Slide 2: Today’s Speakers
	Slide 3: RL At-A-Glance
	Slide 4: Agenda
	Slide 5: A Brief History of YARA
	Slide 6: A Brief History of YARA
	Slide 7: Applications of YARA Rules
	Slide 8
	Slide 9: Malware Hunting Example
	Slide 10
	Slide 11: Email Analysis Example (strings and condition)
	Slide 12
	Slide 13: Brand Protection Example (strings and condition)
	Slide 14
	Slide 15: Compliance/DLP Example (strings and condition)
	Slide 16: What Makes a Good YARA Rule?
	Slide 17: Evaluating YARA Quality
	Slide 18: ReversingLabs YARA Rules
	Slide 19: Other Reliable Sources of YARA Rules
	Slide 20: Writing (and Tuning) Your Own YARA Rules
	Slide 21
	Slide 22: YARA Resources
	Slide 23: Upcoming RL Virtual Events
	Slide 24

